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Generalised Fulton-Gouterman transformation for systems of 
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80, Germany 

Received 23 December 1983 

Abstract. A two-level system which is coupled to a multitude of oscillators, such that the 
total system formally or geometrically is governed by a mirror symmetry, can be exactly 
diagonalised with respect to the two-level subsystem (FG transformation). This has been 
thoroughly exploited for the two-site exciton localisation problem as well as for two-site 
quantum transport. A generalisation to the N-level system is given, provided the N levels 
establish a regular representation of an Abelian group, and if the latter symmetry also 
governs the multi-oscillatory subsystem. Implications for the quantum transport problem 
are discussed. 

1. Introduction 

The coupling of a finite number N of one-particle levels (electron, proton, exciton) to 
a multi-oscillatory system has a long history both in solid state and molecular physics. 
In particular in the form of a particle or excitation transport problem this conformation 
of coupled subsystems has initiated a large amount of theoretical and experimental 
work. One of the earliest and most extensively studied of these problems is that of 
the polaron, where a number of different theoretical approaches have been developed. 
For a good review we recommend the book of Kuper and Whitfield (1963) and the 
article of Appel (1968). Of similar extent is the literature on the exciton problem, 
for which we again recommend the book of Kuper and Whitfield (1963) and also the 
book of Knox (1963). In recent years a great deal of interest has arisen in the quantum 
transport problem (‘quantum diffusion’, ‘quantum tunnelling’) of light particles (pro- 
tons, muons), in crystals which also may be handled as a spatially arranged N-level 
system which is coupled to the phonon system. Another large group of publications 
has been devoted to the problem of tunnelling centres in crystals. A good introduction 
to this field is the article of Dick (1977). Here the N levels are representatives of the 
tunnelling wells around a central ion or vacancy, e.g. the system KC1:OH- is of this 
kind. Finally we mention the quantum motion of hydrogen in organic molecules and 
hydrogen bonded ferroelectrics. 

In the multitude of these systems mostly rather conventional methods have been 
employed for the theoretical description, involving rather crude approximations, It is 
only in the two-site problem that some effort has been made to get more accurate 
theoretical insight (Sander and Shore 1971, Wagner 1978, Junker and Wagner 1983) 
or even exact information. One of the most excessively cited two-site models is the 
‘small polaron’ model of Holstein (1959). 
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2320 M Wagner 

One fascinating and non-conventional way of describing a two-state subsystem, 
which is coupled to oscillators, has been devised by Fulton and Gouterman (1961). 
In this method an ingenious unitary transformation is employed to diagonalise the 
full Hamiltonian with respect to the two-level subsystem. Later Shore and Sander 
(1973) used this method to discuss the two-site exciton problem. In particular they 
have studied the question of a sharp transition from high to low mobility in variation 
of the coupling constant (‘localisation’). It is this question which has been discussed 
for a long time (namely Toyozawa 1968) among exciton researchers and which is of 
great importance in the field of quantum transport. To discuss this issue beyond the 
two-site arrangement it would be highly desirable to have a Fulton-Gouterman (FG) 
like transformation for the N > 2 situation. It is the purpose of the present work to 
design such an extended transformation. 

Fulton and Gouterman (1961) have shown that their transformation can be estab- 
lished for a specific class of systems which display a special kind of mirror symmetry 
(which may be formal). We exploit this symmetry argument by reformulating the FG 

transformation in a somewhat unusual manner in § 2.  This gives us a good starting 
position for deriving an extended transformation in systems of Abelian symmetry (9 3). 
In § 4 a special kind of Abelian symmetry, the cyclic symmetry, is discussed, which 
may prove to be of great interest in the quantum transport problem. Finally, in § 5 
an outlook to physical problems is given. 

In our presentation we freely make use of group-theoretical techniques, which we 
thus assume to be a standard tool. But if the reader wants to have a look at the details, 
we recommend the books of Hammermesch (1964) and of Heine (1960). 

2. The transformation of Fulton and Gouterman 

The Fulton-Gouterman transformation (FGT) has been devised to diagonalise a two- 
level system, which is coupled to a multi-oscillator system, with respect to the two-level 
subsystem, such that a set of two separate oscillatory systems is left. We describe the 
two-level system by Fermi creation and annihilation operators, a:, a, r = 1,2, and we 
require the occupation number conservation (particle number conservation) 

The eigenvectors of the two levels will be denoted as 11) and 12). It is now crucial that 
the system is governed by a kind of inversion symmetry, such that an inversion operator 
J can be defined with the properties 

J /  1) = 12), 
Ja ,  = a2J, 

J12) = 11) 

Ja2 = a, J, 

and which commutes with the Hamiltonian. 

JH = HJ. (2 .3)  

The effect of J onto the vibrational coordinates remains to be specified. It follows 
then that all eigenfunctions of H must be base functions of the two irreducible 
representations T v ,  y = 1 (even parity) and y = 2 (odd parity) of the inversion group 
consisting of the two elements ( E ,  J ) .  In this manner we arrive at two sets of functional 
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forms for the eigenfunctions of the coupled Hamiltonian, 

+ l m  = (1/&)[1 ~P;)(Q) + I ~ ) J ~ Q ( ~ ~ ) ( Q ) I ,  even ( 2 . 4 ~ )  

+2m = (l/h)[Il)@!?(Q) -12>J,@.‘,“(Q)l, odd (2.4b) 

where @:I( Q) respectively are normalised functions in the vibrational subspace, Q 
representing the oscillatory coordinates. We may expect these forms to diagonalise 
the Hamiltonian if the @z)(Q) satisfy certain eigenvalue equations in the vibrational 
subspace. Now the most general Hamiltonian of oscillators coupled to a two-level 
system, which displays the inversion property, may be written in the form 

H =  Ho(P, Q ) + { ( E  +J)[a:alA(Q)+a:azB(O)l} 

= Ho(P, 0) +(a:alA(Q) + a h ( J o A ( Q ) )  + a : a z w Q )  +a:al(JQB(Q>) 

= Ho(P, 0) +f(a:al  -a:aZ)[A(Q)-(JoA(Q))l+~[A(Q) +(Jaq(Q))I 
+f(a:az  + a:ai)[B(Q) + (J@(Q))] +f(a:az-  a:ai)[B(Q)-(J,B(Q))I 

(2.5) 

where E is the unity operation, J, the inversion operator in Q subspace, and where 
Ho(P, Q )  denotes the pure vibrational subsystem, 

Since H must be Hermitian, we must have 

B(Q)+ = (JQB(Q)) .  (2.7) 
Inserting ( 2 . 4 ~ )  in the Schrodinger equation H+ - E+ = 0, we get 

( H  - E I  m ) + l m  3 (1/&)11)[(~0 - ~ l r n  +A(Q))@:)(Q) + B(Q)J,@;)(Q)I 

+ ( 1 /A) I2)[( ~0 - E ,  m + (J&( 0) )J,Q :)( 0) + (J,B( Q )  )@ 011 = 0 
(2.8) 

which is seen to satisfy the equation, if 0;’ simultaneously is a solution of the two 
projected equations 

[Ho- E l m  +A(Q)I@:’(Q) + B(Q)J,@;)(Q) = O  

[Ho- E l m  +(Jd(Q))IJ,@!!z’(Q) +(J,B(Q))@;’(Q) = 0. 

( 2 . 9 ~ )  

(2.9b) 

However, it is immediately evident that these equations are not independent from each 
other, since the second one is generated from the first one by subjecting it to the 
inversion operation J ,  in Q-space. Hence the ansatz ( 2 . 4 ~ )  is shown to satisfy the 
Schrodinger equation, if @;) is a solution of the Schrodinger equation ( 2 . 9 ~ )  in 
vibrational subspace. Similarly it is shown that the ansatz (2.4b) satisfies the Schrodin- 
ger equation, if @$I is a solution of the vibrational Schrodinger equation 

and 

[Ho- E l ,  + A(Q)]@$’( 0)- B( Q)JQ@E’= 0. (2.10) 

We now seek to simplify the formulation by devising a unitary transformation U 
which also has the property of disentangling the original problem into two vibrational 
subproblems. This is achieved if we require the transformed Hamiltonian f i  = U’HU 
to have eigenfunctions of the form 

i l m  3 u + + l m  = I~)Q;)(Q) (2.1 l a )  
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(2.11b) 

which is tantamount to the requirement that the transformed Hamiltonian is diagonal 
with respect to the two-level subsystem. The inversion of (2.1 1 )  reads 

U J I m  = Jl lm,  ~ J 2 m  = ~ l 2 m  (2.12) 

and if we identify these equations with equations (2.4) we have 

( 2 . 1 3 ~ )  

(2.136) 

from which we may directly read off the necessary form of U, 

U = ( 1 /h)( U :U1 - U:U~JQ) + ( 1 /h)( U :U IJQ + U T U 2 ) .  (2.14) 

We may write (2.14) also in a more symmetric form, 

(2.15) 

which is suitable for a pseudospin notation (see the appendix). Using the projective 
representation 

u’uj = l i)(jl (2.16) 

we may rewrite U also in the form 

U = ( l / J % 1 1 ) ( 1  I - /2)(21J~1+(1/4%[12)( 1 I J Q  +11)(211. (2.17) 

We also note the basic transformation properties of U :  

u”f( Q )  = f < T‘2 + 1 )(f( 0) - j Q f (  Q ) jQ ) +&f( Q) + J Q ~ (  0) JQ ) (2.18) 

U + ( U T U ,  -u,’u2)U= u:u2+u:u, 

U’U:U2U = f ( U : U ,  - U:U~)JQ -f(U:a2- U:U~)JQ 

U’U, ’Ul  U = f ( U : U ,  -U:U~)JQ +~(U:U~-U:UI)JQ 

U’JQU = JQ 

and the transformed Hamiltonian reads 

fi U’HU = Ho(P, 0) + A( Q )  + ( U  : a ] -  U , ’ ~ ~ ) B ( Q ) J Q  (2.19) 

which is seen to be diagonal with respect to the two-level subsystem and indeed leads 
to equations of the form ( 2 . 9 ~ )  and (2.10) for the vibrational eigenfunctions. In passing, 
we note that the inversion operator JQ in Q-space may be taken in the explicit unitary 
operator form 

(2.20) 

where Quk denote the ‘odd’ coordinates, (JOQuk) = -Quk (correspondingly the ‘even’ 
coordinates are denoted by Qgk). 

We have presented the Fulton-Gouterman (1961) transformation in a way which 
easily lends itself to a generalisation to systems of higher symmetries than the pure 
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inversion symmetry. In  the original paper (Fulton and Gouterman 1961) the semantics 
of the presentation has been somewhat different. A further quite useful display of the 
Fulton-Gouterman transformation can be made by means of spin-: operators; this is 
given in the appendix. 

3. Abelian symmetry 

We now consider a set of orthogonal one-particle functions Ir), r = 1 , 2 , .  . . , N, which 
are distributed in space in such a manner that they can be uniquely generated by the 
N symmetry operations R, of a group G, 

These functions then establish the regular representation of the group. We require 
that this group be Abelian 

RrR,f= R,)R,. ( 3 . 3 )  

Then it has precisely N irreducible representations Ty, y = 1 , 2 ,  . . . , N,  all of which 
are one-dimensional, and their characters also have the Abelian property 

(3.4) ~y ( RrRr,) = x y  (Rr)Xy ( 

Further, we will need the orthogonality relation of characters, 
N c xy(Rr )*xy , (Rr )  = NSyy,. ( 3 . 5 )  

r = l  

We also assume the vibrational subsystem to be governed by the symmetry group G. 
In particular the vibrational Hamiltonian 

will then be invariant under the operations of the group, 

HaRr, (3.7) 
and each normal coordinate Qyk will be a base coordinate to one particular irreducible 
representation (index y ) :  

RrQyk = Xy(Rr)QykRr (3.8) 

Any vector of the combined Hilbert space, which pertains to the irreducible representa- 
tion Ty, can then be created by the Wigner formula 

N 

+y = C xy(Rr)Rrcp, (3.9) 
r =  I 

where cp is some arbitrary function of the combined space. We now will show that 
the most general base vector of Ty is already created by the choice cp = N-’’211)@( Q), 

(3.10) 
N 

+y = N - ” *  C Xy(RI) (R , I l ) )Rr (Q)~(Q) .  
r =  I 
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(3.1 1) 

(3.12) 

N 
4; = N-‘12 2 xy(RrRa R r R  I1))RrRa [ x ~ ( R ,  I R i l @ ’ (  Q)I* (3.13) 

Since the combined operations RrRa = Rrt for r = 1 . . . N also sweeps over all elements 
of the group, we may write 

r =  I 

N 

4; = N - ” *  X~(R,’)R,’II)R~,[X~(R,’)R,’Q’(Q)I (3.14) 

which evidently is the form (3.9) again, if we choose Q(Q) = xY(R,’ )R, ’@’(Q) ,  whence 
we have proved our statement. 

It is this statement which permits us to proceed in a similar manner to $2 .  Since 
each eigenfunction of a Hamiltonian governed by the symmetry group G must be a 
base vector of one of the irreducible representations Ty, we have exactly N different 
species of eigenvectors for our Abelian group, which is the same number as that of 
the electronic states. We thus may diagonalise the Hamiltonian with respect to the 
N-level subsystem in such a way that each of the N states 17) of the transformed 
picture respectively is attached to one of the irreducible representations T v  That is, 
we require the unitary transformation operator U to be chosen in such a way that the 
eigenvectors of the transformed Hamiltonian are of the form 

G y m  u + J / y m  = I Y ) Q ‘ , ) ( Q ) ,  (3.15) 

r ’ =  I 

or vice versa 

G y m  u G y m  = ~ I Y ) @ ‘ , ) ( Q )  (3.16) 

where m is a quantum number pertaining to the vibrational subsystem. This procedure 
parallels that given in 0 2 (namely (2.1 1) and (2.12)). Since must be of the form 
(3.10), we have the equality 

(3.17) 

(3.18) 

where R, (Q)  is the symmetry operation in Q-space. We emphasise, however, that the 
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operators R,(Q) must be chosen unitary themselves too to warrant the unitarity of U 
itself, 

R X Q )  = K1(Q) .  (3.19) 

However, this is no limitation of generality, since R,(Q) is a representation of G and 
thus must be equivalent to a unitary representation, whence we may directly choose 
it as a unitary representation from the beginning. 

Using (3.8), we derive the basic transformation property of the normal coordinates 

6 u ' Q y k U =  N - ' Q y k  c Xt(Rr) X:'(R,)Xy''(Rr)Iy')(y"l (3.20) 

which thus are seen to be no longer disentangled from the N-level subsystem, except 
for those of the unity representation. However, 

N N 

r = I  y ' . y " =  I 
y k  

U ' ( Q y k Q ; k )  U = Q y k Q ; k .  (3.21) 

The corresponding formulae apply to the normal momenta Pvk. For the N-level 
subsystem we may employ the basic projectors Ir)(sl with the property 

(3.22) 
r =  I 

Their transformation is given by 

N 

u'Ir)(sI = N - '  C / Y ) ( ~ ' I X ~ ( R ~ > X , , ( R ~ ) R : ( Q > R , ( Q )  (3.23) 

which thus also is seen to remain no longer disentangled from the second (that is the 
vibrational) subsystem. 

Turning to the Hamiltonian, it is clear from (3.21) that the pure vibrational Hamil- 
tonian Ha of (3.6) remains invariant, 

Y.Y'= I 

U'HoU = Ha. (3.24) 

The interaction Hamiltonian W is written in the form 

(3.25) 

and since 

(RrW)= w, or R,W = WR, (3.26) 

where the bracket denotes the partial application of R, onto W, sparing operators to 
the right of W, we may also write it in the form 

N N  

r = I  u , u = I  
w =  N-l  c c [RM(~lAWL.(Q)l.  

If we apply the transformation operators (3.18) to this form, we first get 

(3.27) 
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and subsequently 

U' W u  = K2 C I~)(~'~xC(R~R~)X~,(R~R,)[R:(Q)A~~(Q)IR:(O)R~(O) 

and since XC(R,R,)X~.(R,R,) = X~(R~)X,,(R,)X~(R,)X~~(R,) we may apply the orthogon- 
ality property (3.5) of the characters. Then we arrive at 

N 
(3.29) 

U V  

v y '  

If, in place of the projectors lu)(ul ,  we prefer a description in creation-annihilation 
operators a :us, the corresponding formulae read 

N N 
U+QykU = N - I Q y k  Xt(Rr) 2 a='ay,,Xt'(R,)~y.,(R,) ( 3 . 2 0 ~ )  

U'a:a,u = N-' a t a Y , ~ t ( R I ) ~ , , ( R S > R : ( Q ) R , ( Q )  ( 3 . 2 3 ~ )  

, = I  y ' . y " =  I 

N 

Y.Y" I 

( 3 . 2 5 ~ )  

To illustrate these formulae, we may rederive the results of 9 2. There we have 
considered the inversion group G(E, J )  which only had the two elements E and J and 
the two irreducible representations I', (even parity; characters , y , ( E )  = 1,  ,yl(J) = 1 )  and 
Tz (odd parity; characters ,y2(E) = 1, x 2 ( J )  = - 1). We thus have two species of normal 
coordinates, and for simplicity we just take a single even coordinate Q,((JQ,) = 0,) 
and a single odd coordinate Qu((JQu) = -Qu), which by application of formula ( 3 . 2 0 ~ )  
are transformed like 

= Q " ( U T U 2  +a:a,). (3.31b) 

This coincides with formula (2.18a), iff(Q) = Q, and f ( Q )  = Q, is taken successively. 
In a corresponding manner the other formulae (2.18) can be derived. Defining the 
Hamiltonian 

H = $ ( P i  + P t  +QiQi +Q;Qt) + W 

W =  Aii(Q)a:ai +A22(Q)a:a2+A12(Q)aTa2+Azi(Q)a,'ai 
(3.32) 

we get from ( 3 . 3 0 ~ )  

(3.33) 
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which merges into result (2.19), if we make the identifications A,  = A, = ( J d ) ,  
AI*= B, A21 =(J&).  

4. Cyclic symmetry 

The most simple Abelian group, and simultaneously the group of largest physical 
interest, is the cyclic group. It is generated by a single element 

R r  = = E. 

In this case the characters of Ty are given in the simple form 

where y = N denotes the unity representation, and 

X y ( R N - r )  = X ; ( R r )  

X N - y ( R r )  = X;(Rr). 

The set of basic formulae (3.20u), (3.230) and ( 3 . 3 0 ~ )  then are simplified 

U+QykU = Qyk & U:+-, 
Y 

N 

U'u:u,U = N-I 

U'WU = N-I a;ay exp[2ir(s - ~ ~ Y / ~ I ~ ~ ~ ~ ~ Q ~ ~ ' ~ ~ ~ ~ Q ~ I ~ ~ I ~ Q ~ ~ ~ ~ '  

and in particular 

u:u,. exp[2ir(y's - yr)/N]R,(Q)"-' 
Y * Y ' =  I 

N N 

y = l  r ,s  = I 

N 

% Y ' =  1 
U'U~+U,U = N - '  U:U, ,  exp[2ir(y'- y ) r / ~ l .  

In view of later applications in transport theory we may define here a kind of 'occupation 
wave' 

0, = C r exp(-2irar/N)u:ur. (4.8) 

Then we find from (7) 
N 

u+0,u= u;uy+,. 
y =  1 

(4.9) 

Let us illustrate the preceding formulae for a specific example. We consider a cyclic 
chain of N atoms of mass M and springs f between neighbouring atoms, as drawn 
in figure 1. We characterise the displacements of the mass points from their equilibrium 
position by Cartesian mass-reduced coordinates X ,  and introduce the symmetry oper- 
ation R,(Q), 

( R r (  Q ) ~ I >  = Xr + I 9 X N + I  E Z  XI. (4.10) 



2328 M Wagner 

Figure 1. A cyclic chain with harmonic nearest-neighbour interaction and with a one-particle 
level placed in the centres between each pair of mass points. The one-particle states are 
characterised by a potential well having a single level. 

The pure vibrational Hamiltonian then reads 

(4.1 1)  

which is diagonalised by the normal coordinates Q, 

X ,  = N-”’ 1 e x p ( - 2 . r r i r y / ~ ) ~ ,  P, = N-”’ exp(+2.rriry/N)PY (4.12) 

This yields 

N 

y = l  y =  I 

(4.13) 

where 

y = 1 , 2  , . . . ,  N. (4.14) f flt = 4- sin’ 2 r y /  N, 
M 

We now supplement this model by N one-particle states Ir) which are assumed to be 
located respectively between two adjacent mass points such that their energy depends 
linearly on the coordinates (X , , ,  - X , ) ,  and further on that there is an equal static 
transition probability from state Ir) to the states I rk  1). This is incorporated in the 
interaction Hamiltonian 

L r = I  r =  I 

N N  
-2iN-l”hD 1 a:a, exp[-2i.rr(r+$)y/N]QY sin(.rry/N). (4.15) 

r = I  Y = I  



Generalised Fulton-Gouterman transformation 2329 

Employing (4.4), (4.5) and (4.7), we get after some rearrangement 

U +  WU = 3 A 
h N  

a ;a,[exp( i2 r y /  N )  R I  ( Q )  + exp(-i2ry/ N )  R ; I (  Q ) ]  , = I  

N 

y =  I 
= # A  a;a,[exp(i2.rry/N)Rl(Q) +exp(-i2ry/ N)R;I(Q)] 

+hD(Xl - X N )  (4.16) 

which is seen to be diagonal with respect to the N-level subsystem. Each of the 
N levels in the transformed picture is thus respectively attached to a different irreducible 
representation T, of the cyclic group. 

Concluding this section we develop a convenient explicit representation of the 
basic group operator Rl(Q). From (4.1) and (4.10) we have 

RIXr=(RIX,R; l )R l  = X,+,R1.  (4.17) 

Inserting this in the inversion of (12), 

Q, = N-'12 exp(2riryl  N)X,, P, = N-'12 exp(-2riry/ N)P, (4.18) 

we have 

R I  Q, = exp(-2ri Y /  N)Q,Ri, (4.19) 

Now, from the theory of unitary transformations (see a forthcoming book, Wagner 
1984) it is known that an operator effect of this nature may be established by an 
operator of the form 

N N 

r =  I r =  I 

RIP,  = exp(2riy/  N)P,Rl. 

R(IY) = exp[ -( r y /  N)( P,Q, + Q,P,)] = z N, ;N. (4.20) 

This may be directly verified by forming the commutator expansion 

R \ ~ ) Q , R \ ~ ) - '  = Q, + [Q, s,] +. . . . (4.2 1) 

By means of definition (4.18) we have 

Q;= QN-, and P,'=PN-, (4.22) 

and hence R:y)R\N-y) will always form a unitary operator if we exclude y = N and 
y = fN. For y = N we have 

R I Q N  = QNRI (4.23) 

whence we may choose 

RrN)= 1. (4.24) 

If N is an even number, y may also assume the value 1 N ;  then 

R I  Q ( N I ~ ) =  -Q(NIz)RI (for N even). (4.25) 

To have a unitary operator also in this case, we make recourse to the inversion operator 
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form (2.20) of § 2 and choose 

for N = 2 n  exp[(i ../a)( N / 2 ) (  ~ : N 1 2 )  + a t N / Z )  QZNd - i n /  21 R ( N / ~ )  = 
I 

Thus the total form of R I  in Q space is given in the unitary form 

N-l 
for N = 2n + 1 (odd) 

or 

(even). 
4.26) 

(4.27) 

,,. N - I  
for N = 2n (even). 

5. Application in quantum transport 

In the translationally invariant systems, like the cyclic system of § 4, quantum transport 
is characterised by an occupation transfer within the N-level system from site r to site 
r'. Specifically, if occupation (nJ, = (a:a,), at site r at time t = 0 deviates from the 
thermal occupation (nAT = Tr( n, exp( -@H))/Tr  exp( - p H ) ,  then by means of the 
Kubo response formalism the decay to thermal equilibrium can be written in the form 
( P  = kBT) 

where ( A ;  A): denotes the 'spectral function', which is the Fourier transform of the 
autocorrelation function (n,(O)n,( t ) ) H  with respect to the original Hamiltonian H = 

HO+ w, 
(n,(O)n,( t ) ) H  = Tr(e-PHnr(0)n,( t))/Tr e-PH, @ = k B r  (5.2) 

The decay process (1) involves all phenomenologically defined transport quantities, 
which accordingly may be derived from it. It thus turns out that the auto-correlation 
function (5.2) is the decisive quantity to be calculated. By way of the cyclic invariance 
property of the trace operation all factors of the latter may be subjected to a unitary 
transformation U'A U, whence 

In this manner any correlation function with respect to some original Hamiltonian H 
may be transformed to a correlation function of altered elements, which pertains to a 
transformed Hamiltonian H = U'HU. Employing the unitary transformation of the 
preceding two sections, we have from equations (4.7) and (4.8) 
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where 
N 

y =  I 
I;r=fk [PyP;+S2;Q;Qy] 

N 

+.fh a;ay[exp(i2.rry/ N)R,(Q) +exp(-i2~y/N)R;(Q)] 
y =  I 

D N  
J N  Y = I  

+fi= [exp(-i2ry/ N) - l]Q, 

Since this Hamiltonian is diagonal with respect to the N-level subsystem, only those 
correlation functions of (5.4) will survive for which either y = y' = y"= y"' or y = y"', 
y' = y",  

and the remaining correlation functions are fully governed by the vibrational sub- 
dynamics for the respective y-states. The treatment becomes more elegant if the Kubo 
formalism is not applied to the single site occupation operators n, = a:a, but to the 
'occupation wave' superposition defined by (4.8). But we will not pursue this further 
at this place. We only pay notice to a conspicuous result implicit in (5.6), which is 
the fact that there are precisely f N ( N  - 1)  transport pathways. This follows from (5.6) 
by counting all combinations. 

In summing up, there seem to be two main virtues of the presented unitary 
transformation with respect to the quantum transport problem. On the one hand it 
allows for a clear distinction and characterisation of single transport paths. On the 
other hand it establishes for each level of the N-level subsystem in the transformed 
space a specific and well defined vibrational dynamics, which may be solved to some 
desired degree of accuracy. The vibrational eigenstates pertaining respectively to a 
pair of different states y and y' of the N-level subsystem then completely determine 
the considered transport path. 

Appendix. Spin-f formulation of the FG transformation 

The most compact way of describing a two-level system is by spin-; operators, which 
are introduced in the following manner, 

and satisfy the commutation relations 
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as well as the anticommutation relations 

[ax ,  U,]+ = 0, cycl. 

[U+,  (+-I+ = 1 

[U*,  a,l+ = 0 

and have the further properties 
2 2  

U -  = U +  = 0 2 2 2 1  
U ,  = uy = U* = a, 

uxuy = $Uz, cycl. 

u*uz = 4. U,. 

Hamiltonian (5) then reads 

have been used, which indicate that g and U respectively denote the 'even' and 'odd' 
parity parts of A and B, ( J d , )  = A,, ( J d , )  = -A,,, etc. Further, by means of (7) we 
must have 

X ( Q ) =  - B J Q ) ,  ('47) 

whereas A,, A ,  and B, are Hermitian. The FG transformation operator (2.15) then reads 

U = (l/J?)[; + b y ] (  1 - JQ)  +( ~/J?)[u, +U,]( 1 + JQ)  (A81 

and its basic transformation properties read 

U+f,(Q) U =f , (Q) ,  u"fu(Q)  U = 2uJJQ) 
('49) 

U+UZU = ux, U+uX U = uZ JQ, u'Uyu= -iU,,JQ 

where the indices g and U respectively hint at 'even' and 'odd' parity functions. The 
transformed Hamiltonian reads 

fi= U + H U = H o ( P ,  Q)+A(Q)+2uzB(Q)Jo,  (A101 

We point out that the Hamiltonian form (A5) has been chosen to be slightly more 
general than in the original paper of Fulton and Gouterman (1961), who have chosen 
A,  = 0 and B, = 0. 

It further should be noted that there is no restriction on the number of vibrational 
coordinates, but it is beneficial to separate them in even and odd parity ones, Qgk, Quk, 

JQQgk = Q g k J Q ,  JQQuk = -Q,JQ. ( A l l )  
Then an explicit form for the inversion operator may be introduced, 

r 1 
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where bik and bpk are the vibrational creation and annihilation operators, 

bpk = (2apk)-”*(apkQpk +iPpk), P = g, U. (A131 

The form (A12) has already been proposed by Fulton-Gouterman (1961) and others. 
Finally, it may be enlightening to write down one of the most simple forms of a 

FG Hamiltonian, 

H = h ( P i  + P i  +ntQ:) 
+ hDa,Qu + h c x ( A o  + Ag Qg + AggQi + A,” at) 

where 0, Ao, A,, Agg, A,, are constants. 
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